Uses of Functional Phenotyping

Field	Mission	Potential Users	Main Advantage
Data acquisition	 Whole-plant, soil and atmospheric data collection Real-time analysis and web storage Continuous and simultaneous collection of data from numerous plants and sensors 	Research and development (both academic and industrial)	 Real-time analysis High-resolution (momentary) analysis of the soil–plant–atmosphere continuum (SPAC) Fast and dynamic decision-making for the researcher
Abiotic stress	Screening for genotypes, genes or treatments associated with reduced yield penalties under stressful conditions	Research and development (both academic and industrial)	 Reducing the number of candidates to be tested in the field Improving the design of the field experiment Bringing new chemicals or cultivars to market more quickly
Optimization	Selection of the right chemical (from among many) and optimal application rate	Fertilizer and chemical companies	Reducing the time to marketUnderstanding how the product works
Indoor growth	Optimization of growth-chamber and greenhouse conditions based on plant performance in different parts of the facility	Cannabis/berry industries	 Biofeedback control of the growth facility No need to involve image analysis No problem of dense vegetation interference Optimization of levels of irrigation, nutrients and biostimulants
Big data	 Collection of data from the root, shoot, soil and atmosphere, continuously and simultaneously from numerous plants Study of the above cross- interactions and their feedback loops 	Research and development (both academic and industrial)	AI and deep-learning source; construction of tables containing multiple physiological profiles of numerous plants under different conditions
Rootstock performance	Study of the physiological properties of the root	Research and development (both academic and industrial)	 Identification of root functional characteristics Early identification of root malfunctions due to biotic or abiotic factors
Whole-plant physiology	Improved understanding of whole- plant water relations	Research and development (both academic and industrial)	 Whole-plant response profile to dynamic environmental changes High-resolution comparison of small differences in physiological profiles
Multi-treatment experiments	Truly randomized experimental set- ups with automated mixing of irrigation and chemical solutions and delivery capabilities	Research and development (both academic and industrial)	 Control of irrigation in terms of time, weight, soil moisture and/or daily transpiration Control of the concentration and duration of any treatment delivered through the irrigation system